140 Chapter 23

23.2 Large Eddy Simulation

Large Eddy Simulation provides a compromise between DNS, where all scales
of turbulence are computed directly from the Navier-Stokes equations, and RANS
equations, where all scales of turbulence must be modeled. In Large Eddy Simula-
tion, small-scale turbulence is filtered out from the Navier-Stokes equations, and a
model is used to evaluate small scales. The resulting filtered Navier-Stokes equation
is solved for the large-scale motion, which is responsible for most of momentum and
energy transport. The large scale of motion is highly dependent on the flow condi-
tions and geometries under consideration. The small scales are computed from the
turbulence model known as the subgridscale model, which in turn influence the large
eddies. Since the small-scale eddies are more or less universal and homogeneous, it
is postulated that the subgridscale model would be applicable to a wide range of
flow regimes and conditions. Recall that the turbulence models for RANS are very
much limited on the range of applications, because they attempt to model a wide
range of scales and the random motion of eddies with no organized behavior.

In the following sections, descriptions of filtered Navier-Stokes equations for LES
computations and typical subgrid models are presented.

23.2.1 Filtered Navier-Stokes Equations

In order to explore the concept of filtering, consider a simple example of central
difference approximation expressed as
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This expression simply approximates the derivative at point i as the averaged values
of dependent variable at locations i + 3 and ¢ — 1. Therefore, the expression (23-1)
can be written as
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which may be interpreted as a filtering operator for which any scale smaller than
Arz is filtered out. Now, a filtered quantity is defined as

e =g [ i@ = [ 106 0 (23-)

where, in this case, G(z,£) = 1/4, G is called a filter function, and A is the filter
width. Typically, a filter over the entire domain is defined such that

f@) = [ $©6(@ 0k (23-4)
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It can be shown that if G is a function of (z — £), then differentiation and filtering
operation commute [23.1]. Now, (23-4) is written as

F@) = [ 106 - o)t (23-5)
Some examples of one-dimensional filter functions are:
L |z -e|<as

1. Top hat filter, Gz — &) ={ A
0 otherwise

3/2 g2
2. Gaussian filter, G(z — §) = (%) exp [- GM]

A2
The concept of filtering is extended to three dimensions by the following
f@w) = [ £6)G(@ - &) (23-6)

where z; = z,y,2 and § = €, ?7:(

Now, define any fluctuation at scales smaller than grid scale A as the subgrid
scale (SGS) or unresolved quantity, and denote it by a prime. As defined previously
by (23-4), the filtered or resolved quantity is denoted by an overbar. Thus,

f=Ff+f (23-7)

With the definitions of the resolved and unresolved quantities completed, the
Navier-Stokes equations are now modified to yield the Filtered Navier-Stokes (FNS)
equations. The FNS equations govern the evolution of large-scale eddies. It will be
given for an incompressible flow initially, and, subsequently it will be extended to
compressible flows.

After the application of a filtering process, the incompressible Navier-Stokes
equations become

o

5 =0 (23-8)
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where 7;; is the subgridscale stress term which represents the effect of small scales.
The subgrid scale stress is given by

Tij = Uilly — Tyl (23-10)

which, with the substitution of
Ui = U — uﬁ (23—11)
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can be written as

T T ol 7

Ti; = u,-'&j = TL-;ZT; = 'I_I.,"U,J- 'U.J-L_Li = uiuJ
= L+ Cij + R{j (23-12)

The terms Ly;, Cij, and R;; are defined as follows:

L; = uii; — U4; is called Leonard stress,
Cy; = —(wu);—uju;) is called cross term stress, and
R;; = —uju} is called the subgridscale Reynolds stress

Observe that the Leonard stress involves only the resolved quantities, and therefore
it can be explicitly computed. Furthermore, note that this term represents the
interaction of resolved scales which contribute and affect subgrid scales. The cross
term stress and the SGS Reynolds stress involve unresolved quantities and must be
modeled. The cross stress term represents the interaction of resolved and unresolved
scales, whereas the SGS Reynolds stress represents the interaction of unresolved
scales.

It is important to note that a filtered quantity represented by an overbar, that is,
f, is different from the averaging process used in the RANS equation, in particular
FT#F.

It is common to rearrange Equation (23-9) and rewrite it as

.(?}E.*.i('ﬁ) = _l_a._(“_l )6..
ot = Ox; Wl =T, B T
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(23-13)

where a modified pressure is defined as

PTik (23-14)

| r=

pr=p-

and 1
Ty = Tij — §Tkk5ij (23-15)
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Extension of the FNS equations to compressible flow is straightforward except
that Favre-filtering is used. As in the case of Favre- (or mass-) averaged Navier-
Stokes equations, this approach is taken in order to prevent introduction of sub-
gridscale terms into the continuity equation. A Favre-filtered quantity is defined

as
f= "’; (23-16)
Now, the Favre-filtered Navier-Stokes equations are written as
op <
_P+_(— ) =0 (23-17)
9 - . 6ﬁ 8f¢j 3‘7’.‘_.,'
E(’m") dz; (,ou.u,) + 5z Oz Oz, + Oz, i)
As in the case of incompress1ble flow, Equation (23-18) is rearranged as
a _ i p" 1 B'rkk 37-,, 81-.,- 1 Brkk
—(pii; i - = 6 2
57" * o, By PO) + 5284~ 8o = Bz; Y r; 3 om0y (319
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'6—t(P'U-|) + 5;;([)1&.1&]) + B?‘ (p - ETM) 6;_1 = 332_,' -+ _6?3 (Tij — ‘é’fkkéij (23—20)

Define a modified pressure p* as

.1
PP =P 3T (23-21)
and 1
T =Ty — 37hk0ys (23-22)
Then, the momentum equation is written as
o __ . 3p _ 07y | Or
(,O’U.,) + (puluj) + 6 6.’1,'_,- + 8:3_,- (23'23)
where
.2 oW Oty | 0iy\ _ —
Ty = ~3h3 6-:'*'“(6_%'*“8_& = K oij (23-24)

Sij = + = =y (23-25)
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Furthermore,
Ty = platly — Uitly) = Pl Ptz /p — PUill; (23-26)
is the subgrid scale stress.

Note that at this point the subgridscale stress 7;; appearing in Equation (23-20)
is an additional unknown which must be modeled. Furthermore, the introduction of
Tk in relations (23-21) and (23-22) and the question of how if, may be computed need
to be deliberated. These issues will be addressed shortly. For now, the goal is to
establish the required set of filtered Navier-Stokes equations for LES of compressible
flows. To complete the system of equations, consider the filtered energy equation
expressed as

e a T 8
at(pe,) + [(pc: + p)u,] = 2 k(—?—x—; + 'a?i(fi. Siyug) (23-27)
where 1 1
pé, = pé + 5,s(a2 + 7+ %°) - 5Tk (23-28)

With the assumption of perfect gas, the total energy given by relation (23-28)
can be written as

. P BT 1
pé; = c,pT + Ep(u2 + 9+ @%) — 57kk (23-29)
which can be rearranged as
— kk 72 23.
Pé, = c,p (T 26.,,0)+ =p(@* + 7* + 0?) (23-30)

Consistent with the definition of modified pressure, define a modified tempera-
ture as

T P 23-31
2. (23-31)
Subsequently
pé, = c,pT + p(u + 7 + 07) (23-32)

Consider also the equation of state for a perfect gas which, in terms of the filtered
quantities, is written as
p=pRT (23-33)

In order to write the equation of state given by (23-33) in terms of modified
pressure and modified temperature, consider the following

.1 O | Thk . Thie _
— =T = pRT — =T — R R =
P 3Tkk pR 3Tkk %5 pr+ %7 p

_ ek E_l)
pR(T 2c.,p)+kk(2c‘, 3
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or

p" = pRT + (% — —;:) Tk (23-34)

Now the energy equation given by (23-27) is written in terms of the modified
pressure. Consider the second term given by (pe; + p)u; and rewrite it as

(pe+plui = (pe+ plui — (P& + p* )it + (p& + p*)ils

- Qi+ (Pt i (23-35)
where

Qi = —(pec + p)ws + (p&: + p* )il (23-36)
is the subgrid heat flux. Thus, the energy equation is now written as

0 , @ (,8T), &
3 (kN + L (Tu S i
m(ﬂea)-i- [(pe¢+p i) = 3z, # oz, k oz, + oz, WY .,) (23-37)

For a relatlvely high Reynolds number, typically the following is introduced in
the momentum and energy equations, respectively.

155 = pu S (23-38)
and
K Sy = pii; Sy ' (23-39)

Thus, the system of equations composed of filtered continuity, momentum, and
energy equations is written as

Bp .

y i ( i) = (23-40)
: o ,__ . e O 8, -

5 Pl) + oz, (Plti; + p*éi;) = 52, + a—zj(p Si) (23-41)

aQ; a 4 . =
5020+ oG vy = 24 L (1) 4 D a5 sy

These equations are now expanded in Cartesian coordinate and are written in a
flux vector formulation by defining

- ;o —- -

p ] pi
pi pi + pt
Q=| (23-43) E = | puv (23-44)
P il
pé | | (P& +p*)il |
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i | i
F=| pi*+p* (23-45) G =| piri (23-46)
pow Pt + pt
| (P& +p*)T | | (P& +p") |
[ 0
7+ 1 Sex
E, = T,_.-; + ,Ud?::y (23—47)
Tox + 1 5es
ag - = e
| Qu+ KT (08 + 58,y + 0 8e) |
[ 0
'r;; + p S‘y:
_ |t +uS,
Fﬂ = vy - vy (23-48)
Tye + 145y
-+ ~ =
| @+ k%%—+u(ﬁ3,,,+ﬁ L+ 08,)
0
T+ 1S,z
—| 7t +uS
Glu — T‘g u 2y (23‘49)
h + uSes
o -~ -~ -
| Q:+ kgg; + p (@Sez + 7Sy + 0 5) |

Now the flux vector formulation, similar to that of the Navier-Stokes equation
given by (14-1), is written as

_@_+B_E_+.3£+§_3Eu aF"’_{.aG“'
ot o6r Oy 8z Oz Gy Oz

The subgridscale terms 7;; and Q; are typically expressed in terms of the eddy
viscosity and eddy diffusivity similar to that in RANS equations and is presented

next.

(23-50)

23.2.2 Subgridscale Models

At this point, certain parallelisms between LES and RANS can be realized.
Since a relatively strong background on RANS and turbulence models has already



